

Antibiotic Management of Prosthetic Joint Infections

R Andrew Seaton

Consultant Infectious Diseases and General Medicine

NHS Greater Glasgow and Clyde

Declarations of interest

- Consultancy
 - Novartis
 - Pfizer
 - Astrazeneca
 - Astellas
 - Cubist
- Research funding
 - Novartis

55 year old male, December 2014

- Sepsis + R Hip pain
- Background
 - COPD
 - Depression
 - Recent nasal polypectomy
 - LTHR 2004, RTHR 2009 (complicated)
- Medication
 - Oxycodone, Fluoxetine, Amitriptyline, Diazepam

Orthopaedic History (1)

Orthopaedic History (2)

Orthopaedic History (3)

1st Stage Rev 26/01/15 (5th THR)

- GBS (7 samples)
 - Sensitive: Penicillin, Vancomycin, Ceftriaxone, Linezolid
 - Resistant: Doxycycline, Clindamycin, Levofloxacin
- Antibiotic Rx?

Antibiotic considerations

- Activity vs organism
- Penetration to site of infection
- (Activity in biofilm)
- Drug-Drug-Host interactions
- Side effects
- IV or oral
- Length of Rx
- Synergy

1st Stage Rev 26/01/15 (5th THR)

- GBS (7 samples)
 - Sensitive: Penicillin, Vancomycin, Ceftriaxone, Linezolid
 - Resistant: Doxycycline, Clindamycin, Levofloxacin
- Antibiotic Rx?

Oxycodone Fluoxetine Amitriptyline Diazepam

8 Interactions Found

Contraindicated

Linezolid + Fluoxetine

Linezolid and Fluoxetine both increase serotonin levels. Never use combination. Linezolid may increase serotonin as a result of MAO-A inhibition. If linezolid must be administered, discontinue serotonergic drug immediately and monitor for CNS toxicity. Serotonergic therapy may be resumed 24 hours after last linezolid dose or after 5 weeks of monitoring, whichever comes first.

Serious – Use Alternative

Linezolid + Amitriptyline

Linezolid and Amitriptyline both increase serotonin levels. High likelihood serious or life-threatening interaction. Contraindicated unless benefits outweigh risks and no alternatives available. Linezolid may increase serotonin as a result of MAO-A inhibition. If linezolid must be administered, discontinue serotonergic drug immediately and monitor for CNS toxicity. Serotonergic therapy may be resumed 24 hours after last linezolid dose or after 2 weeks of monitoring, whichever comes first.

Serious – Use Alternative

Linezolid + Oxycodone

Linezolid increases toxicity of Oxycodone by unknown mechanism. Possible serious or life-threatening interaction. Monitor closely. Use alternatives if available. Risk of hypotension, hyperpyrexia, somnolence, or death; separate by 14 d.

Before Treatment: Prevention

- Patient factors: age, obesity, co-morbidity (DM)
- Asepsis, theatre airflow, maintain "normothermia"
- MSSA decolonisation
- Antibiotic prophylaxis: up to 24 hours (Norwegian arthroplasty study)
 - UK favours single dose
 - Choice: Fluclox + Gent associated with increase in risk of AKI (reversible), Cefuroxime: CDI risk
- Antibiotic-impregnated cement: Gent, Clinda, Vanc
- Negative pressure: "Jubilee dressing"
- Hand hygiene, ward environment, Pt education

Cox regression-adjusted survival curves of THRs performed in Norway from 1987 to 1995. The probabilities of survival were calculated with revisions due to infection as the endpoint for patients receiving different antibiotic regimes for prophylaxis. The p value refers to a test of homogeneity showing a statistically significant difference in survival among the regimes. Cox regression-adjusted survival curves of THRs performed in Norway from 1987 to 1995. The probabilities of survival were calculated with revisions due to any cause as the endpoint for patients receiving different antibiotic regimes for prophylaxis. The p value refers to a test of homogeneity showing a statistically significant difference in survival among the regimes.

Espehaug et al J Bone Joint Surg [Br] 1997;79-B:590-5.

Accepted wisdom?

"Osteomyelitis is rarely controlled without the combination of careful, complete surgical debridement and **prolonged parenteral antibiotic therapy at high dosage**"

Waldvogel et al N Engl J Med. **1970**;282:316-22

Surgical approach

- Debridement of bone, Removal of polyethylene and metal work
- Antibiotic-impregnated spacers: Gentamicin, Vancomycin
- Retention of metal work only if
 - Acute infection
 - very recent implant i.e. before formation of biofilm
 - Inoperable

Aim of Surgery: cure or suppress infection and maintain function

Osman et al CID 2013; 56: 1

Aim of antibiotic therapy

- To deliver an optimum concentration of antibiotic to which the organism is sensitive, direct to the site of infection to effect a cure
- To augment/ support (but not replace) the surgical approach
- For agents with time dependent characteristics, concentration must remain above the MIC of the organism for the maximum duration of the dosing interval

Route of administration in PJI

- Topical: Beads/ cement (primary or adjunct Rx)
- Intra-articular: infusion
- Oral
- Intravenous (+/- Oral, +/- Topical)
- Intramuscular

Factors affecting antibiotic bone penetration

- Reduced penetration if:
 - Low concentration of drug at site of infection
 - Cortical bone (c.f. cancellous)
 - Poor vascularity
 - Uninfected/ uninflammed
 - Presence of biofilm

Free drug concentration correlates with concentration in bone (in β -lactams)

FIG. 2. Mean concentrations of ceftriaxone in serum (total and free levels) and in cancellous and cortical bone.

Scaglioni et al AAC 1997; 41: 2292

β -lactams and bone penetration

β-lactams penetrate bone at approximately 5-20% of serum concentrations

(oxacillin, cefazolin, ceftriaxone, ceftazidime, piperacillin, meropenem, aztreonam all studied)

IV delivered [_β-lactam] far exceed the MICs of likely organisms in most cases (free concentration is adequate)

Serum concentration of oral delivered β lactams <10% of IV therefore unlikely to achieve adequate bone concentration

β -lactams and bone penetration

Historical data support oral penicillins when used in combination with probenecid

- Reduction in renal excretion
- Higher peak serum concentration
- Limited data available

No licence for this use

Widely used in SSTI in Aus/NZ

SM Bell, Med J Aust 1976; 2: 592

Vancomycin: non infected bone

Vol. 32, 1988

VANCOMYCIN CONCENTRATIONS IN BONE 1321

Patient no.	Concn (µg/g) in bone		Time (min)	Concn (µg/ml) in serum		Bone/serum ratio	
	Cancellous	Cortical	postdose	Simultaneous	Peak	Cancellous	Cortical
1	1.49	0.83	0	38.6	35.6	0.04	0.02
2	1.32	ND^{a}	0	52.9	37.9	0.03	NA ^b
3	0.81	2.26	185	10.5	24.2	0.08	0.21
4	1.53	0.59	95	10.5	21.1	0.15	0.06
5	2.2	1.75	11	37.0	c	0.06	0.05
6	2.65	1.60	50	14.4	23.4	0.17	0.10
7	0.61	0.50	100	18.2	26.8	0.03	0.03
8	0.53	ND	90	17.1	25.4	0.03	NA
9	0.95	ND	106	10.9	24.0	0.09	NA
10	0.58	0.52	138	16.2	30.0	0.04	0.03
11	16.0	2.58	70	17.0	26.0	0.94	0.15
12	1.0	0.57	92	15.7	28.0	0.06	0.04
13	0.71	0.19	98	20.9	37.3	0.03	0.01
14	1.63	ND	45	16.7	28.0	0.10	NA
Mean	2.3	1.14	77.1	22.1	28.3	0.132	0.07
Range	0.5-16.0	ND-2.58	0-185	10.5-52.9	21.1-37.9	0.03-0.94	0.01-0.21
SD	4.0	0.84	52.6	12.6	5.45	0.24	0.066

TABLE 1. Group 1 (total hip arthroplasty) data

⁴ ND. Vancomvcin not detectable in hone supernatant.

7-13% of serum concentration (- free drug concentration)

Graziani et al AAC 1988; 32: 1320

Vancomycin: infected bone

Fig. 1. Vancomycin concentrations in plasma and bone versus time.

Grazzino Clin Pharmakokinet 2008; 47: 793

Teicoplanin: infected bone

Fig. 3. Teicoplanin concentrations in plasma and bone versus time.

Grazzino Clin Pharmakokinet 2008; 47: 793

Daptomycin 8mg/kg Penetration into Bone

FIG 2 Representation of the daptomycin concentrations in plasma (C_{1HOUR} and C_{OP}) or in synovial fluid (C_{SF}) ($\mu g/ml$) and in bones ($C_{THIGHBONE}$ and $C_{SHINBONE}$) ($\mu g/g$) versus the sampling time.

Montange et al. Antimicrobial agents and Chemotherapy, 2014; 58: 3991-3996

Daptomycin in bone (DFI)

Potential advantages of IV therapy

- Mode of delivery for Beta lactams, GPs, Daptomycin
- Acute: sepsis / infection beyond the bone
 - e.g. SAB, Endocarditis, severe SSTI
- Bioavailability
 - Reliable serum concentration following IV administration
 - Avoids problems with absorption
 - Ability to deliver bigger doses
 - Increased likelihood of achieving therapeutic concentration at site of infection
- Spectrum of activity (for certain agents)
- Chronic: compliance and tolerability
 - Missed doses are less likely

Good practice recommendations for outpatient parenteral antimicrobial therapy (OPAT) in adults in the UK: a consensus statement

- 1. OPAT team and service structure
- 2. Patient selection
- 3. Antimicrobial management and drug delivery
- 4. Monitoring of the patient during OPAT
- 5. Outcome monitoring and clinical governance

Journal of Antimicrobial Chemotherapy Advance Access published January 31, 2012 Journal of Journal of Antimicrobial doi:10.1093/jac/dks003

Potential disadvantages of IV therapy

- Requires an IV device
 - Painful to insert
 - Source of infection/ SAB
 - Thrombosis/ phlebitis / fracture
 - Inconvenient dosing regimens
- Requires hospitalisation or OPAT
 - Time consuming to administer
 - Restrictions of device / Hassle
 - Expensive
- Antimicrobial stewardship
 - Use of agents associated with CDI
 - May be unnecessarily broad spectrum

Wellsphere.com

Clinical outcome data

- Mainly observational studies with few RCTs
- Too many variables make comparisons between different IV agents difficult
 - Surgical approach
 - Variable methodology
 - Definitions of success
 - Length/ consistency of follow up

Outcomes in OPAT Rx Osteomyelitis

Tice et al JAC 2003; 51: 1261

Outcomes in OPAT Rx OM (n=198)

Kaplan-Meier survival estimate of time to treatment failure for all patients showing all follow-up data available.

Mackintosh CL, White H.A, and Seaton R.A, JAC 2011

Kaplan-Meier survival estimate of time to treatment failure for all patients with OM per diagnosis

Mackintosh CL, White H.A, and Seaton R.A, JAC 2011

Teicoplanin for Bone infection in Glasgow OPAT

- Indications
 - Resistant staphylococcal infections (CoNS or MRSA)
 - Gram-positive infections with β -lactam allergy
 - Prior failure with β -lactams
- Dosing regimen
 - Loading: 20 mg/kg for 3 days (inpatient or outpatient)
 - Maintenance: 3×/week (butterfly)
 - TDM at longest interval (72 hours)
 - Target trough concentration for Bone infection: 20–30 µg/ml
 - <20 µg/ml: increase dose or reduce interval (alt. days)
 - >30 µg/ml: reduce dose or increase interval (2× or 1×/week)

Hazard Ratio from Survival analysis (Cox regression) for the association of the initial IV Antibiotic with failure over the follow up period

Initial IV Rx	No.		Hazar d ratio		р
Teicoplanin	140	48 (34%)	1		
Ceftriaxone	51	10 (19.6%)	0.54	0.27-1.06	0.074
Other	5	1			

Mackintosh CL, White H.A, and Seaton R.A, JAC 2011

Debridement, Antibiotics and Implant Retention (DAIR)

- 6 weeks IV AB
 - Empiric
 - Vanc + Meropenem
 - Rationalized
 - Ceftriaxone
 - Teicoplanin

~12 months oral

Byren et al JAC 2009; 63: 1264

DAIR and duration of IV Rx

Byren et al JAC 2009; 63: 1264

Daptomycin in Bone infection: Observational data to 30 days post-Rx

J Antimicrob Chemother doi:10.1093/jac/dkt067

Daptomycin vs SOC in 2 Stage Revision (Phase II study)

- Microbiological confirmed 90
 PJI
- Randomised: 6-8mg/kg Dapto vs GP/SSP
- No oral agent
- 6 weeks post 1st stage
- TOC 2 weeks post 2nd stage
- If success reviewed @3-4 months
- 75 pts randomised

Dapto 6mg/kg Dapto 8mg/kg Comparator

The MIC for daptomycin remained below the susceptibility breakpoint of $\leq 1 \mu g/ml$ for all staphylococcal isolates in patients with microbiological failure, with no increases in daptomycin MIC for isolates obtained at the first surgery compared with isolates obtained at reimplantation.

Important Side-effects in OPAT agents

- Ceftriaxone: Rash, LFTs, diarrhoea, leucopenia
- Teicoplanin: Leucopenia, anaemia, TCP, fevers
- Daptomycin: CPK/ myotoxicity, Eosinophilic pneumonitis

Relative frequency of adverse drug reaction (ADR) types, in all first OPAT episodes over 10 year study period.

Note: An ADR in an individual patient in some instances involved multiple drug reaction types (e.g. rash and fever); each ADR type is counted separately in frequency bars even where they stem from one ADR event.

ADRs, Infection Type and AB Used

Line related complications in OPAT

- Infection: 0 to 3 per 1000 OPAT patient days
 - Associated with length of IV Rx
- Other line events
 - thrombosis, mechanical and chemical phlebitis: 5 to 50 per 1000 OPAT patient days
 - lowest risk in tunnelled central venous catheters
 - Highest risk when flucloxacillin primary OPAT agent
- No additional risk of patient/ carer administration

Barr DA et al EJCMID 2012;31:2611. Upton A et al NZMJ 2004;117:U1020. Fisher DA et al IJAA 2006;28:545, Esposito S et al J Chemother 2007;19:417. Matthews PC et al JAC 2007;60:356

Reasons for admission from OPAT

Oral Antibiotic Therapy

Comparison of IV s Oral Rx: End of Rx

Review: Antibiotics for treating chronic osteomyelitis in adults Comparison: 1 Oral antibiotic versus parenteral antibiotic (AB) Outcome: 1 Remission at the end of treatment

Study or subgroup	Oral AB n/N	Parenteral AB n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M - H, Fixed, 95% CI
Gentry 1990	30/31	27/28	+	45.7 %	1.00[0.91,1.10]
Gentry 1991	18/19	13/14	+	24.1 %	1.02 [0.85, 1.22]
Gomis 1999	11/16	8/16		12.9 %	1.38 [0.76, 2.48]
Mader 1990	11/14	10/12		17.3 %	0.94 [0.65, 1.37]
Total (95% CI) Total events: 70 (Oral AB), Heterogeneity: Chi ² = 1.8 Test for overall effect: Z =	7, df = 3 (P = 0.60); F 0.70 (P = 0.48)	70 ² =0.0%	•	100.0 %	1.04 [0.92, 1.18]
Test for subgroup differe	nces: Not applicable	0.1	0.2 0.5 1 2 5	5 10	
		Favours parenteral	Favou	rs oral	

Conterno, Turchi, Cochrane review Sep 2013

Comparison of IV s Oral Rx: ≥ 12 months post Rx

Review: Antibiotics for treating chronic osteomyelitis in adults Comparison: 1 Oral antibiotic versus parenteral antibiotic (AB) Outcome: 2 Remission at least 12 months after the end of treatment

Study or subgroup	Oral AB n/N	Parenteral AB n/N	Risk Ratio M - H, Fixed, 95% Cl	Weight	Risk Ratio M-H,Fixed,95% CI
Gentry 1990	24/31	22/28		48.5 %	0.99 [0.75, 1.29]
Gentry 1991	14/19	12/14		29.0 %	0.86[0.61,1.21]
Mader 1990	11/14	10/12		22.6 %	0.94 [0.65, 1.37]
Total (95% CI) Total events: 49 (Oral AB), Heterogeneity: Chi ² = 0.3 Test for overall effect: Z = Test for subgroup differen	8, df = 2 (P = 0.83); F 0.66 (P = 0.51)	54 ² =0.0%	•	100.0 %	0.94 [0.78, 1.13]
		0.1 Favours parenteral		5 10 ours oral	

Quinolones

- Cipro most studies but extrapolate for Levofloxacin
- High oral bioavailability
- Penetrates macrophages and neutrophils
- High bone: serum concentration (>7.3)
- Bone concentration is proportional to dose and in excess of MIC of sensitive organisms.
 - [Bone] 2-10 ug/g
- Effective vs MSSA, CNS, GNB
- In G+ve infection advisable to use 2nd agent to reduce R risk
- Beware QTc prolongation, drug interactions

Rifampicin

- High oral bioavailability
- Penetrates neutrophils
- Excellent bone penetration (1.7ug/g)
- Active in biofilm ++
- Synergistic with other agents
- R develops quickly ++
- Use only in combination (consider delay in administration)
- Drug interactions, LFTs

FIG. 2. Cure rates of infection for antibiotic combinations with rifampin at day 11. Data for antibiotics alone are not shown. LNZ, linezolid; VAN, vancomycin; RIF, rifampin; DAP45, daptomycin at 45 mg/kg/day; DAP100, daptomycin at 100 mg/kg/day.

Other Oral Antibiotics useful in PJI

- Sodium fusidate: caution statins, LFTs
- Trimethoprim: caution CKD, K+
- Doxycycline: chelated by Fe, Ca, ant acids
- Clindamycin: CDI, LFTs
- Linezolid: Haem toxicity, neuropathy.
 Caution with RIF, other D-DIs
- Pristinamycin (unlicensed)

 Table 2. Percentage penetration of linezolid in osteo-articular

 tissue and fluid for corresponding serum concentration

	SF(%)	Synovium (%)	Muscle(%)	Bone (%)
Case 1	84.4	48.4	64.5	17.7
Case 2	133.7	107.9	161.8	97.8
Case 3	70.1	49.8	65.3	15.5
Case 4	107.3	98.9	82.1	43.6
Case 5	93.2	102.8	104	43
Case 6	125.3	121.1	59.6	47
Case 7	64.5	62.7	70.5	24.9
Case 8	88	94.3	100	52.8
Case 9	85.8	92.7	81.8	37.1
Case 10	66.4	43	45.1	22
Mean	91.9	82.2	83.5	40.1
±S.D.	23.8	28.4	32.9	24.1

Journal of Antimicrobial Chemotherapy (2002) 50, 747–750 DOI: 10.1093/jac/dkf207

IDSA PJI Guidelines

Procedure	Organism	IV Antibiotic		Duration
DAIR	Staph	Flucloxacillin Ceftriaxone Or Vancomycin Daptomycin Linezolid (IV/PO)	With Rifampicin	 2-6 weeks then oral combination Rx including RIF Total 3 months: THR, other 6 months: TKR
DAIR	Other	Pathogen specific IV or highly bio available oral combination		4-6 weeks then potentially indefinite suppressive Rx (?avoid RIF)
Amputation	Any	Pathogen specific IV or highly bio available oral combination		24-48 hrs post amputationunless sepsis4-6 weeks if residualinfection

IDSA PJI Guidelines

Procedure	Organis m	IV Antibiotic		Duration
One Stage Revision	Staph	Flucloxacillin Ceftriaxone Or Vancomycin Daptomycin Linezolid (PO)	With Rifampicin	2-6 weeks then oral RxTotal3 months: Rif + otherLonger if required
One Stage Revision	Other	Pathogen specific IV or highly bio available oral combination		4-6 weeks then potentially indefinite suppressive Rx (?avoid RIF)
Resection arthroplasty / 1 st of 2 stage revision	Any	Pathogen specific IV (without Rifampicin) or highly bio available oral combination		4-6 weeks then stop
				Osman et al CID 2013; 56: 1

OVIVA study

- Comparing IV vs oral approach in OM (including PJI) 6/52 Rx
- Randomisation within 7 days of surgery or commencement of IV Abx

Conclusions

- Use a best guess/tailored IV antibiotic which will cover the likely/proven organisms
 - Empirical and acute settings
- Use high dose therapy for optimum PK/PD
- Combine with Rifampicin if Staphylococcal infection and the aim is "cure" (timing)
- Duration dependent on surgery and availability of highly orally bio-available agents
 - Resistance
 - Drug interactions (including QTc)
- OPAT use is safe: Follow Good Practice Recommendations for OPAT
- IV Beta lactams probably more effective than GPs
- "Equipoise" in IV vs oral for longer term Rx

New Developments

OPAT trends over 10 yrs in NHS GGC

	Trend over time
Referral from non-local hospital	X ² _{trend} = p < 0.0001 72.92
Referral from secondary care	X ² _{trend} = p < 0.0001 26.07
Co-morbidity	X ² _{trend} = p < 0.0001 24.07
Non-SSTI infection	X ² _{trend} = p < 0.0001 97.14
MRSA infections (as % of <i>S. aureus</i>)	$\begin{array}{c} X^2_{\text{trend}} = \\ 6.682 \end{array} p = 0.0097 \end{array}$
G-ve infections (% of +ve cultures)	$\begin{array}{c} \bigstar & X^2_{\text{trend}} = \\ 10.491 & p = 0.0012 \end{array}$
Self / carer antibiotic admin	X ² _{trend} = p < 0.0001 48.49

Barr et al, IJAA 2012

ESBL Resistant E. coli Implant infections

FIG 1 Time-kill curves with 0.5, 1, and $4 \times$ the MIC of tigecycline (TIG), colistin (COL), fosfomycin (FOS), and gentamicin (GEN) against *E. coli* in log growth phase (inoculum, 10⁶ CFU/ml). Values are means \pm SD. The experiments were performed in triplicate. GC, growth control.

Corvec et al, AAC, 2013; 57: 1421

FIG 2 Time-kill curves with $0.5 \times$ the MIC of tigecycline (TIG), colistin (COL), fosfomycin (FOS), and gentamicin (GEN) in combinations against *E. coli* in log growth phase (inoculum, 10^6 CFU/ml). Values are means \pm SD. The experiments were performed in triplicate. GC, growth control.

Growth during Rx and 5 days post Rx

FIG 3 Activities against planktonic bacteria in cage fluid aspirated during treatment (i.e., day 5; open bars) and 5 days after end of treatment (i.e., day 10; closed bars). In each group, fluid from 12 cages (from 3 animals) was investigated. The *y* axis shows \log_{10} CFU/ml in aspirated cage fluid, expressed as means ± standard deviations (SD).

Corvec et al, AAC, 2013; 57: 1421

Background

- c.180 K TKR or THRs / year in UK
 - 14 K in Scotland (2013)
- c. 0.5-5% of all joint replacements Hip > knee
- Diagnosis
 - Acute post-op vs Acute infection of established prosthesis: Heat, erythema, pain, swelling +/-wound
 - Sub-acute: pain and radiological loosening
- Multiple tissue sampling w/o contamination
 - Sonication (when available)
 - Microbiological (PCR when available)
 - Histological

Common organisms

- *Staph.aureus* inc MRSA (40.6%)
- Coagulase negative staphylococci (15.9%)
- Coliforms (15.6%)
- Enterococci (9.6%)
- Streptococci
- Diphtheroids
- Pseudomonas
- Anaerobes
- Polymicrobial

(Fifth Report of the Mandatory Surveillance of Surgical Site Infection in Orthopaedic Surgery)

3.0

Decline in inpatient SSI in TKR and TKR in Scotland

FIGURE 6: Trends in the annual inpatient incidence of SSI in knee arthroplasty procedures with upper and lower 95% confidence intervals, 2003 to 2013

FIGURE 10: Proportion of SSI involving superficial or deep or organ space infections, for hip arthroplasty procedures (inpatient and readmission to day 30), 2009 to 2013

Hip arthroplasty enhanced SSI surveillance: 0.76% by day 30 Majority are deep seated SSI

SSHAIP, HPS, 2014

Fosfomycin + Colistin: Cure in biofilm

FIG 4 Rate of cure of cage-associated infection. The values are numbers of cage cultures without growth of *E. coli* divided by the total number of cages in the treatment group (n = 12). Significant differences compared to untreated controls are indicated with asterisks (*, P < 0.05; **, P < 0.01).

Corvec et al, AAC, 2013; 57: 1421

Pharmacokinetic parameters of daptomycin at steady-state (Day 4 or 5) from 9 patients with diabetic foot infections treated with 6 mg/kg daptomycin

	Cmax (mg/l)	Half life (h)	AUC 0-24*
Plasma	72.9	10.05	619.30
Subcutis inflamed	4.0	10.98	54.47
Metatarsal bone	4.7	10.72	60.24

* Steady state concentrations at baseline were used for concentrations at 24 hours

•The EUCAST breakpoint for staphylococci is 1 mg/L