Microbial colonisation and canine atopic dermatitis

Dr Tim Nuttall
RCVS Specialist in Veterinary Dermatology
Head of Dermatology
Staphylococcal colonisation exacerbates canine AD

Erythema

Papules

Scaling

Seborrhoea

Lichenification

Hyperpigmentation
Malassezia colonisation exacerbates canine AD

Erythema

Papules

Scaling

Seborrhoea

Lichenification

Hyperpigmentation
Staphylococcus pseudintermedius

- Opportunistic pathogen
- 37.2% healthy dogs colonised
- 87.5% of atopic dogs colonised
 - Infections common
 - Worsen clinical lesions
Isolates from atopic and healthy dogs

- No association with healthy, atopic or infected status
Staphyloccocal adhesion in canine AD

- Adhere more readily to atopic skin

FIG 1: Box plot of the adherence indices shown by *S. intermedius* to canine keratinocytes.
Adhere to lesional and non-lesional skin
Staphylococcal adhesion in canine AD

- Isolates from healthy and atopic dogs adhere equally well to fibronectin, fibrinogen and cytokeratin 10
Staphylococcal colonisation in AD

- Associated with host factors
- Altered cutaneous microenvironment
- Bind to sites of TH2-inflammation
- Expression of adhesion molecules
Malassezia colonisation in canine AD

- *Malassezia* skin and ear infections common
- Most atopic dogs are colonised
 - Interdigital skin (70%) and ears (63%)
- Less population diversity on atopic skin?
Genotyping of *Malassezia* isolates

- Multiple isolates from healthy or affected dogs
- Most isolated from multiple sites
- Isolate E2 associated with canine AD
- Phospholipase is a virulence factor?
Malassezia colonisation in canine AD

- Most if not all dogs colonised with *Malassezia*
- Density and population heterogeneity important in infection
- Role of host factors likely
- Role of more virulent isolates?
Innate immunity and canine AD

- Antimicrobial peptides (AMPs)
 - β-defensins (BD), cathelicidins (Cath) and others
- Broad spectrum antimicrobial activity
- Modulate innate and adaptive responses
- Cell recruitment and activation
- Wound healing
- Coat colour in dogs
Human beta-defensins

<table>
<thead>
<tr>
<th>Expression</th>
<th>hBD1</th>
<th>hBD2</th>
<th>hBD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constitutive</td>
<td></td>
<td>Induced</td>
<td>Induced</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inflammatory stimuli</th>
<th>hBD1</th>
<th>hBD2</th>
<th>hBD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td>TNF(\alpha), IL-1(\beta), G-ve bacteria (also G+ve and yeasts)</td>
<td>TNF(\alpha), G+ve and G-ve bacteria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobial activity</th>
<th>hBD1</th>
<th>hBD2</th>
<th>hBD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-ve</td>
<td></td>
<td>G-ve</td>
<td>G+ve (esp. S. aureus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeast</td>
<td>G-ve Yeast</td>
</tr>
</tbody>
</table>
Innate immunity and human AD

- Complex pattern of relationships
- Down-regulation of hBD1
- Up-regulation of hBD2, hBD3, RNase7 and psoriasin in lesional skin
- Dermcidin expression decreased in lesional skin
- No changes in Cath (LL-37)
- No differences in non-lesional atopic and healthy skin
Antimicrobial peptides in canine AD

- hBD3 effective against *S. pseudintermedius*
Canine beta-defensins in AD

- Very variable and inconsistent findings for cBD1, cBD3, cBD103, cCath and others in atopic and healthy skin
cBDs in canine AD and inflammatory dermatoses
Staphylococcal exacerbation of AD

- Staphylococcal proteins can penetrate the stratum corneum following mast cell degranulation
- Toxins affect the skin barrier and immune system
 - Enterotoxins and exfoliative exotoxins
 - Staphylococcal enterotoxin B (SEB) induces T-cell production of IL-31 in *D. farinae*-sensitized dogs
Staphylococcal exacerbation of AD
Staphylococcal SAGs in AD

• Staphylococcal SAGs in humans
 – Induce CLA on T-cells
 – Induce MHCII, IL-1, IL-4, TNFα and IL-12
 – Up-regulate endothelial ICAM-1 and VCAM-1
• *S. pseudintermedius* SAGs stimulate canine PBMCs
Staphylococci and TSLP

- Langerhans cell activation and inflammation
- Increased expression with TLR3 and TLR4 ligands
Malassezia exacerbation of canine AD

- Intradermal test reactivity, specific IgE serology, passive transfer and PBMC proliferation studies
Malassezia major and minor allergens

Chen and others (2002) Veterinary Dermatology 13: 141-150
Microbial colonisation in chronic AD
Antimicrobial therapy in AD – can we do better?

- Routine use of topical antiseptics
 - May be drying
 - Incorporating anti-adhesives
- Manage the underlying inflammation
- Colonisation with less pathogenic species to modify the microbiome?